Consider $(\frac{25}{6},-5,\frac{10}{3})\in\mathbf{Q}^3$.Find all triples $(a_0,a_{1},a_2)$ of relatively prime integers such that
\begin{equation} (a_0,a_1,a_2)\sim (\frac{25}{6},-5,\frac{10}{3})\end{equation}
Solve:
\begin{align*} \begin{cases} a_0=t \frac{25}{6}\\a_1=-5t\\a_2=t \frac{10}{3}\\ \end{cases}\end{align*}$t\neq 0$.Let $t=\frac{6}{5}k$.\begin{align*} \begin{cases} a_0=5k\\a_1=-6k\\a_2=4k\\ \end{cases}\end{align*}Let $k=\pm 1$,done.